Project: KBS-Simplified Telephone Network

(Forward and backward chaining)

According to Fig. 1 bellow, consider the example of a call being attempted from phonel, connected to local exchange A, to phone2, connected to local exchange K. The call is routed via one of the trunk exchanges connected to A, such as trunk1.

A link between two trunk exchanges is called a route. The so‑called primary route, from a trunk exchange to a local exchange (trunk1 to K here), is the route which is tried first. It is simply specified as the trunk exchange to which the call will be sent next, and is normally one of the two direct routes, i.e. trunk4 or trunk5 in this case.

If a call fails to connect through the primary route, the secondary route is tried. Any of the other trunk exchanges could be nominated as the secondary route. If trunk3 is the secondary route and the primary route is unavailable, the call would be passed to trunk3, which has its own primary and secondary routes for connecting the call to local exchange K
National telephone networks have to cope with vast numbers of calls and large fluctuations in demand, while subject to the constant risk of damage to parts of the network through component failure, extreme weather, inadvertent cable severance, or vandalism. As a result, congestion can occur on any route. The network is typically monitored over consecutive cycles of approximately five minutes duration, with appropriate intervention being taken whenever necessary to maintain a satisfactory service.

For the purpose of this assignment, the performance of each route on the network is measured by the number of calls lost on the route per monitoring cycle, and the number of cycles over which the problem has persisted. It is also assumed that the occurrence of many calls to a single local exchange, the focus of demand, will be automatically recognized. lf the number of calls to the focus of demand becomes too great, a so‑called focused overload can occur. Focused overloads are caused by large numbers of people across the country phoning into a single local exchange, e.g. for a TV phone‑in programme, seeking information following a disaster, or attempting to purchase tickets for a major sports event.

This work will involve the construction of different forms of Logic Programs/KBS that take input data about the network, and recommend appropriate forms of intervention. Four types of intervention are considered here:

1. Call gapping is way of rationing calls on to the trunk network aimed at a specific local exchange. It can be applied in cases of focused overload to avoid the network becoming congested with diverted calls.

2. Setting a trunk reservation factor reserves some of the physical connections between two trunk exchanges for calls on their primary route. lt is considered a mild form of intervention.

3. Disallowing secondary traffic can be thought of as an extreme form of setting the trunk reservation factor, where all physical connections on a given route are reserved for calls on their primary routing. lt is considered a fairly severe form of intervention.

4. Rerouting secondary traffic involves proposing new routes for calls that cannot be connected by the primary route.

Your Programms will be designed to recommend none, one, or more of these forms of intervention. Some informally stated rules (i.e. not Prolog syntax) about network management are listed below. Each rule relates to a single route. The order of these rules may be significant if the closed‑world assumption is made.

The following 11 rules represent the knowledge-base.

Rule 1

If the number of calls lost in the last cycle is 0 then the problem extent is zero.

Rule 2

If the number of calls lost in the last cycle is greater than 0 but less than 10 then the problem extent is minor.

Rule 3

If the number of calls lost in the last cycle is greater than or equal to 10 then the problem extent is major.

Rule 4

If the problem extent is minor or major and there is a single focus of demand then the problem is a focused overload.

Rule 5

If the problem extent is minor or major and the problem is not a focused overload then the problem is congestion.

Rule 6

If the problem extent is none then no intervention is recommended.

Rule 7

If the problem is a focused overload and ist duration is greater than 1 cycle then call gapping is recommend.

Rule 8

If the problem is a focused overload and is duration is less than or equal to 1 cycle then no intervention is recommended.

Rule 9

If the problem is congestion and is duration is less than or equal to 1 cycle then setting a trunk reservation factor is recommended.

Rule 10

If the problem is congestion and is duration is greater than 1 cycle and less than 3 then rerouting traffic is recommended.

Rule 11

If the problem is congestion and is duration is greater than 3 cycles then disallowing secondary traffic is recommended.

Question 1:

10 marks
Sketch an inference network that summarizes these rules.

Question 2:

10 marks
Write a program in Prolog (native backward chaining) using one Prolog clause for each of the informally stated rules.

Explain how your program is working.

(
To do this you will need to use the following.

1. Forward chaining rules representing the informally stated rules above.

2. Question about a route, so the use can input:

a. The number of calls lost on the route during the last monitoring cycle.

b. The number of monitoring cycles for which the problem, if any, has persisted.
c. Whether or not there is a single focus of demand, i.e. many calls directed at a single local exchange.

3.
Any other Prolog construction that are needed.

(
Implement your rules in Prolog like in “Medical.pro” program in the same order they are given above.

(
Run your program several times with different inputs. Does your program make the recommendation you expect?

(
Explain how your program is working.

Question 3:

25 marks
Build a forward inference engine program that asks the user for information about a route on the network, and uses this information to recommend none, one or more of the four forms of intervention.

(
To do this you will need to use the following.

3. Forward chaining rules representing the informally stated rules above.

4. Question about a route, so the use can input:

a
The number of calls lost on the route during the last monitoring cycle.

b
The number of monitoring cycles for which the problem, if any, has persisted.
c
Whether or not there is a single focus of demand, i.e. many calls directed at a single local exchange.

3.Any other Prolog construction that are needed.

(
Implement your rules in Prolog (Traffic.pro program) in the same order they are given above.

(
Use the forward chaining inference engine from the program traffic.pro.

(
Run your program several times with different inputs. Does your program make the recommendation you expect?

(
Explain how your program is working.

Hints:

The rules should be in the same way as in the program traffic.pro.

Question 4:

25 marks

Compare the two approaches used in question 2 and 3. Comment on their differences and on the advantages and disadvantages of each.

Hints

1
Use Prolog clauses like this one to define the high level goal that you aretrying to prove:

recommend(call_gapping, Loss_rate, Duration, Focus):-

problem(focused_overload, Loss_rate, Focus),

Duration > 1 .

/* assumes 'Problem' is defined elsewhere in your program as one or more Prolog clauses. */

2
After adding other suitable rules and relations, you can initiate backward chaining by entering a suitable query at the console. For example: recommend(Intervention, 8, 2, yes).
In this example, the second parameter is the number of calls lost in the last cycle, the third is the number of cycles over which the problem has persisted, and the fourth indicates whether or not there is a single focus of demand. If there is more than one solution, remember to press the space bar after the first solution has been displayed.

3
In Prolog, sub-conditions may be separated by a comma (meaning AND) or by a semicolon (meaning OR).

Question 5:

15 marks

Compare the three approaches used in Questions 2, 3 and 4. Comment on their differences and on the advantages and disadvantages of each. Explain whether they are all equally affected by the closed-world assumption.

Your answer to this question should not exceed 200 words, excluding any diagrams or tables.
[image: image1.wmf][image: image2.wmf]

Phone2

[image: image3.wmf]

K

Local exchange

Trunk exchange

 Trunk 3

Trunk 4

 B

 Trunk 1

 Trunk 2

 A

Phone 1

Figure 1. A simplified Telephone Network

Solution to KBS-Simplified telephone network

(Forward and backward chaining)

Question 1: Sketch an inference network that summarises these rules.

Question 2:

/*

Question 2

*/

% to start the program type start.

% The first section is an interpreter and user interface

% --------------------- ---------------------

start :-

myretract,

myinput_assert,

recommendation(R, S),

my_output(R,S).

myretract:-

retract(lost_call(L)),

retract(single_focus_of_demand(S)),

retract(duration(D)).

myretract.

myinput_assert :-

nl,

write('Please, enter number of lost call:

'),

read(Lost_call), assert(lost_call(Lost_call)),

write('Please, enter the duration:

'),

read(D), assert(duration(D)),

write('There is a single focus of demand (y/n?
)'),

read(Single_focus_of_demand),

assert(single_focus_of_demand(Single_focus_of_demand)).

my_output(R, S) :-

write(' The KBS recommend: '), write(S), nl,

write('This recommendation is based on the rule number: '), write(R),nl,nl.

% The following section is the knowledge-base

% --------------------- ---------------------

recommendation(R, S):-

problem(rule1, problem_extent_is_zero),

R = rule6, S = no_intervention.

recommendation(R, S):-

problem(rule4, problem_is_focused_overload),

duration(D), D > 1,

R = rule7, S = call_gapping.

recommendation(R, S):-

problem(rule4, problem_is_focused_overload),

duration(D), D =< 1,

R = rule8, S = no_intervention_is_recommended.

recommendation(R, S):-

problem(rule5, problem_is_congestion),

duration(D), D =< 1,

R =rule9, S = trunk_reservation_factor_is_recommended.

recommendation(R,S):-

problem(rule5, problem_is_congestion),

duration(D), D > 1, D <4,

R =rule10, S = rerouting_secondary_traffic_is_recommended.

recommendation(R,S):-

problem(rule5, problem_is_congestion),

duration(D), D > 4,

R = rule11,S = rerouting_secondary_traffic_is_recommended.

% Problem rule 4 and 5 with the or

% --

problem(rule4, problem_is_focused_overload):-

problem_extent(rule2, problem_extent_is_minor),

single_focus_of_demand(y).

problem(rule4, problem_is_focused_overload):-

problem_extent(rule3, problem_extent_is_major),

single_focus_of_demand(y).

problem(rule5, problem_is_congestion):-

problem_extent(rule2, problem_extent_is_minor),

single_focus_of_demand(n).

problem(rule5, problem_is_congestion):-

problem_extent(rule3, problem_extent_is_major),

single_focus_of_demand(n).

problem(rule1, problem_extent_is_zero):-

problem_extent(rule1, problem_extent_is_zero).

% Problem extent rules 1 to 3

% --------------------- ---------------------

problem_extent(rule1, problem_extent_is_zero):-

lost_call(Lost_call),

Lost_call= 0.

problem_extent(rule2, problem_extent_is_minor):-

lost_call(Lost_call),

Lost_call > 0,

Lost_call < 10.

problem_extent(rule3, problem_extent_is_major):-

lost_call(Lost_call),

Lost_call >= 10.

Question 3: Forward chaining

%--

% telephonefor.pro - a small sample of a customized rule-based

% system shell. It is Forward chaining inference engine

%

%

% These operator definitions allow the rules to be

% written without the strict functor(arg1, arg2)

% syntax normally used.

:- op(790, fx, if).
% prefix operator

:- op(780, xfx, then). % infix operator

:- op(770, xfy, and). % infix that can be linked

:- op(700, xfx, is).
% what it was

:- op(690, fx, not).
% less than what it was

% These are the rules of the system. Typically these rules

% would be in a separate file that is consulted after the

% inference engine, below, is loaded. The file with the

% inference engine would also contain the operator definitions

% so they don't have to be included with the rules.

% The rules are goal-driven rules using simple attribute

% value pairs for representing information. The rule base

% is queried from Prolog with the goal ?- prove(action is X).

%
 rule1

if calls_lost_cycle is zero then problem_extent is zero.

%
rule2

if calls_lost_cycle is middle then problem_extent is minor.

%
rule3

if calls_lost_cycle is high then problem_extent is major.

%
rule4a

if problem_extent is minor and focus_of_demand is yes then problem is focused_overload.

%
rule4b

if problem_extent is major and focus_of_demand is yes then problem is focused_overload.

%
rule5

if problem_extent is major and focus_of_demand is no then problem is congestion.

%
rule6

if problem_extent is zero then recommendation is no_intervention.

%
rule7

if problem is focused_overload and duration is middle then recommendation is call_gapping.

%
rule8

if problem is focused_overload and duration is small then recommendation is no_intervention.

%
rule9

if problem is congestion and duration is small then recommendation is setting_trunk_reservation_factor.

%
rule10

if problem is congestion and duration is middle then recommendation is rerouting_secondary.

%
rule11

if problem is congestion and duration is high then recommendation is disallowing_secondary_traffic.

% The place to start. Since this is a forward-chaining data-driven

% system, we start by gathering all the data.

main :-

 retractall(known(_,_)),

 prove(recommendation is X),

 write(recommendation is X), nl.
% The rest of the code is the custom inference engine. Given

% the goal of 'proving' an attribute value pair, the system

% looks for rules with a 'then' side that provides a value for

% the attribute. If it finds one, then it attempts to prove

% the subgoals on the 'if' side of the rule.

%

% If there are no rules for finding the value of an attribute,

% then the user is asked for a value.

% prove/1 is the guts of the inference engine. It recognizes three

% cases.

% 1) There is a list of subgoals to prove, separated by 'and's.

% In that case, call getav to see if the first is true, and,

% if so prove the rest.

% 2) There is a single goal with a negation. This will only

% happen if the Value is bound to a value, in which case

% simply ask to see if the Value is correct, and negate.

% 3) There is a single goal, call getav to see if its true.

prove(Attr is Value and Rest) :-

getav(Attr, Value),

prove(Rest).

prove(Attr is not Value) :-

atomic(Value),

not(ask(Attr, Value)).

prove(Attr is Value) :-

getav(Attr, Value).

% getav/2 gets the values of attributes in two different ways.

% 1) If there is a rule defining this attribute, only use the

% the rule to get its value.

% 2) If there is no rule, then its fair to ask the user for

% the value.

% Prolog note: the line 'if Conditions ...' is a Prolog statement

% simply looking for that pattern. If it finds one, the variables

% are unified appropriately. If the subsequent prove(Conditions)

% fails, then Prolog backtracking will return to the 'if ...'

% goal and find the next rule that matches and try again.

getav(Attr, Value) :-

if Conditions then Attr is X,

Value = X,

prove(Conditions).

getav(Attr, Value) :-

not(if _ then Attr is _),

ask(Attr, Value).

% Prolog note: ask/2 can be used in two different ways.

% 1) When Val is a variable, it means 'what is the value of

% this attribute?'

% 2) When Val is bound to some value, it means 'is this the

% value of the attribute?'

ask(Attr, Val) :-

known(Attr, X),
% is there a known value for this attribute?

!,

% if so don’t ask again

X = Val.
% succeed or fail based on the expected value.

ask(Attr, Val) :-

write('What is the value of '),

write(Attr), write('? '),
% ask the user

read(X),
% get the answer

assert(known(Attr, X)), % remember it

X = Val.
% succeed or fail based on the value

Duration > 3 cycles

Rule 10: recommandation is rerouting secondary traffic

Rule 11: recommandation is disallowing secondary traffic

Duration > 1 cycle

Rule 9: recommandation is setting a trunk reservation factor

Duration =< cycle

Rule 8: recommandation is no intervention

Duration =< cycle

Duration > cycle

Rule 7: recommandation is call gapping

Rule 6: recommandation: no intervention

Rule 5: Problem is congestion

Rule 4: Problem is focused overload

Single focus of demand

Greater than or equal than 10

Between 0 and 10

Is 0

Number of calls lost in the last cycle

(Detected or user’s input)

Rule 3: Problem extent major

Rule 2: Problem extent minor

Rule 1: Problem extent zero

� EMBED MS_ClipArt_Gallery.2 ���

� EMBED MS_ClipArt_Gallery.2 ���

Prof. Dr. T. Nouri Telephone network AI-Knowledge-Based System 09.01.2002
7/11

_1015335722

_1015335832

