Association Rules

What is association mining?

n Ex:
n If A and B then C
n If A and not B then C
n If A and B and C then D etc.

Support \& Confidence

Support is defined as the minimum percentage of transactions in the DB containing A and B.

Confidence is defined as the minimum percentage of those transactions containing A that also contain B.

Ex. Suppose the DB contains 1 million transactions andt that 10'000 of those transactions contain both A and B.

We can then say that the support of the association if A then B is:
Supp $=10^{\prime} 000 / 1^{\prime} 000^{\prime} 000=1 \%$.
Likewise, if $50^{\prime} 000$ of the transactions contain A and $10^{\prime} 000$ out of those $50^{\prime} 000$ also contain B then the association rule if A then B has a confidence $10^{\prime} 000 / 50^{\prime} 000=20 \%$.

Confidence is just the conditional probability of B given A.
R : LS ==> RS

```
Supp(R) \(=\quad \operatorname{supp}(L S \cup R S)\)
= \# Transaction verifying R / (Total \# of Transaction)
```

Ex:
R: Milk=> Eggs,
A support(R) of 0.8 means in 80% of transaktion Milk and eggs are together.
The confidence means the correlation, the relation between the LS and the RS.
Exercice 1: Association Mining Based on the following data, find out the support and confidence of the rule : Farine => Sucre

Ticket 1	Ticket 2	Ticket 3	Ticket 4
Farine	Oeufs	Farine	Oeufs
Sucre	Sucre	Oeufs	Chocolat
Lait	Chocolat	Sucre	Thé

Solution:

Farine $=>$ Sucre has a confidence of 100%, this is the force of the association and a support of $2 / 3$. <==> number of association farine $=>$ Sucre divided by number of ticket where sucre or farine exist.

Exercice 2

Repeat the data used in exercice 1 a, by using the option statistics in DLV to find the support and confidence?

Exercice 3

FishLastVVee	SaltConsump	Smoking	DrinkPattern	Gender	Hypertension
1	0	0	1	1	1
O	1	0	1	1	0
1	1	1	1	1	1
0	0	1	O	1	1
0	0	0	1	1	1
0	0	0	1	1	0
1	1	0	0	0	0
1	O	1	0	O	1
0	0	1	1	1	1
1	1	0	0	0	1
0	O	0	0	0	1
1	1	O	1	1	1
0	0	1	1	O	1
1	1	1	1	1	1
0	O	0	1	1	1
1	1	0	1	1	1
1	0	0	1	1	1
0	0	0	0	0	1
1	1	0	1	1	0
O	0	1	1	1	1
1	0	0	0	0	0
1	0	0	1	1	1
1	1	0	1	1	1
0	0	0	1	1	0
0	1	0	1	1	0
1	O	1	1	1	1
1	1	0	1	1	1
0	0	1	0	1	1
1	0	0	0	0	1

What is Support and what is Confidence, having the following Rule:
Rule: FishlastWeek=1, Hypertension=1.

$$
<==>
$$

FishlastWeek => Hypertension.
Calculate the support the Support and the Confidence of this Rule?

