
Data Mining State of the Art

Prof. Dr. T. Nouri Nouri@Nouri.ch

Overview

- 1. Overview of KDD
- 2. KDD techniques
- 3. Demo
- 4. Summary

Knowledge-Based System

T. Nouri	Data Mining	4

Overview of Knowledge Discovery

- What is KDD?
- Why is KDD necessary
- The KDD process
- KDD operations and methods

What is Knowledge Discovery?

The iterative and interactive process of discovering valid, novel, useful, and understandable knowledge (patterns, models, rules etc.) in Massive databases

What is Knowledge Discovery?

- Valid: generalize to the future
- Novel: what we don't know
- Useful: be able to take some action
- Understandable: leading to insight
- Iterative: takes multiple passes
- Interactive: human in the loop

Why Knowledge Discovery?

- Data volume too large for classical analysis
 - Number of records too large (millions or billions)
 - High dimensional (attributes/features/ fields) data (thousands)
- Increased opportunity for access
 - Web navigation, on-line collections

Knowledge Discovery goals

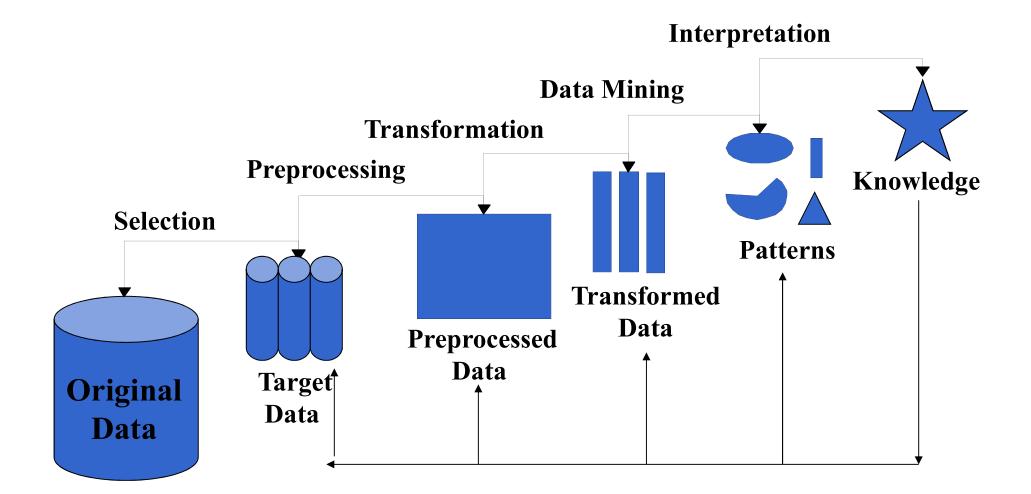
Prediction

- What? Opaque

Description

- Why? Transparent

Knowledge Discovery operations

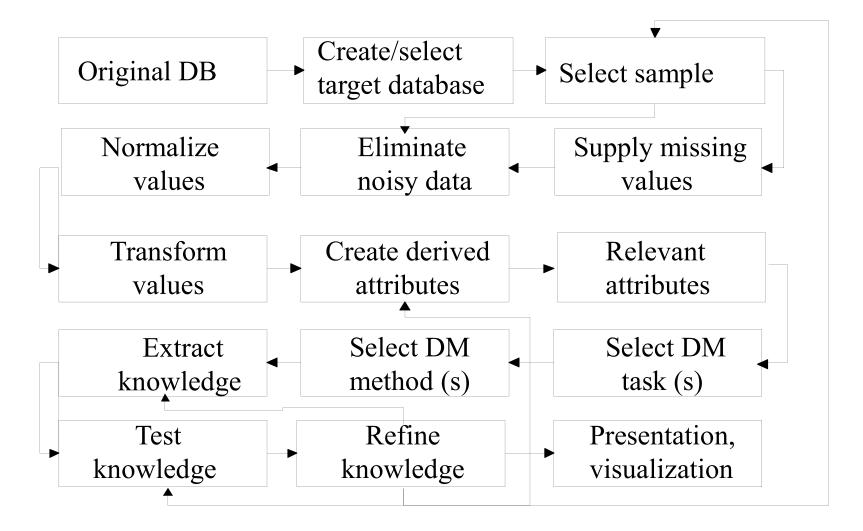

Verification driven

- Validating hypothesis
- Querying and reporting (spreadsheets, pivot tables)
- Multidimensional analysis (dimensional summaries); On Line Analytical Processing
- Statistical analysis

Knowledge Discovery operations

Discovery driven

- Exploratory data analysis
- Predictive modeling
- Database segmentation
- Link analysis
- Deviation detection


T. Nouri	Data Mining	12

Understand application domain

– Prior knowledge, user goals

- Create target dataset
 - Select data, focus on subsets
- Data cleaning and transformation
 - Remove noise, outliers, missing values
 - Select features, reduce dimensions

- Apply data mining algorithm
 - Associations, sequences, classification, clustering, etc.
- Interpret, evaluate and visualize patterns
 - What's new and interesting?
 - Iterate if needed
- Manage discovered knowledge
 - Close the loop

T. Nouri	Data Mining	15

Knowledge Discovery Methods

- Predictive modeling (classification, regression)
- Segmentation (clustering)
- Dependency modeling (graphical models, density estimation)
- Summarization (associations)
- Change and deviation detection

- Association rules: detect sets of attributes that frequently co-occur, and rules among them, e.g. 90% of the people who buy cookies, also buy milk (60% of all grocery shoppers buy both)
- Sequence mining (categorical): discover sequences of events that commonly occur together, .e.g. In a set of DNA sequences ACGTC is followed by GTCA after a gap of 9, with 30% probability

- CBR or Similarity search: given a database of objects, and a "query" object, find the object(s) that are within a user-defined distance of the queried object, or find all pairs within some distance of each other.
- Deviation detection: find the record(s) that is (are) the most different from the other records, i.e., find all outliers. These may be thrown away as noise or may be the "interesting" ones.

- Classification and regression: assign a new data record to one of several predefined categories or classes. Regression deals with predicting real-valued fields. Also called supervised learning.
- Clustering: partition the dataset into subsets or groups such that elements of a group share a common set of properties, with high within group similarity and small inter-group similarity. Also called unsupervised learning.

- Many other methods, such as
 - Decision trees
 - Neural networks
 - Genetic algorithms
 - Hidden markov models
 - Time series
 - Bayesian networks
 - Soft computing: rough and fuzzy sets

Research challenges for KDD

Scalability

- Efficient and sufficient sampling
- In-memory vs. disk-based processing
- High performance computing
- Automation
 - Ease of use
 - Using prior knowledge

Types of Knowledge Discovery Tasks

General descriptive knowledge

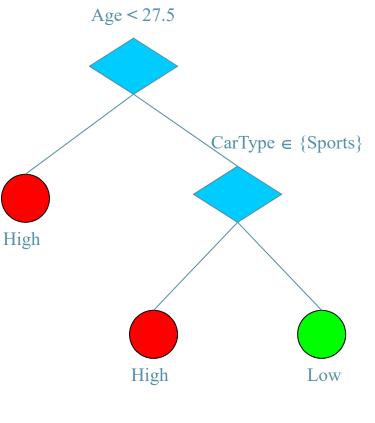
- Summarizations
- symbolic descriptions of subsets
- Discriminative knowledge
 - Distinguish between K classes
 - Accurate classification (also black box)
 - Separate spaces

Knowledge Discovery Techniques techniques

- 1. Classification-Decision tree etc.
- 2. Association rules
- 3. Sequence mining
- 4. Clustering
- 5. Deviation detection
- 6. K-nearest neighbors

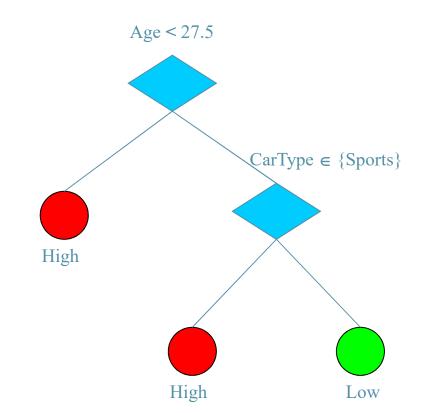
What is Classification?


Classification is the process of assigning new objects to predefined categories or classes

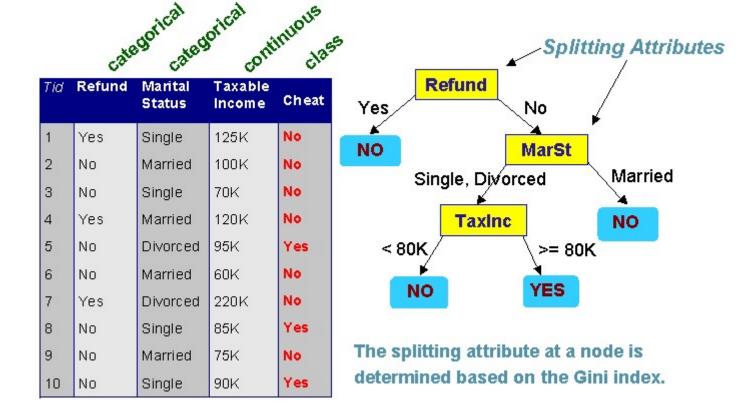

- Given a set of labeled records
- Build a model (decision tree)
- Predict labels for future unlabeled records

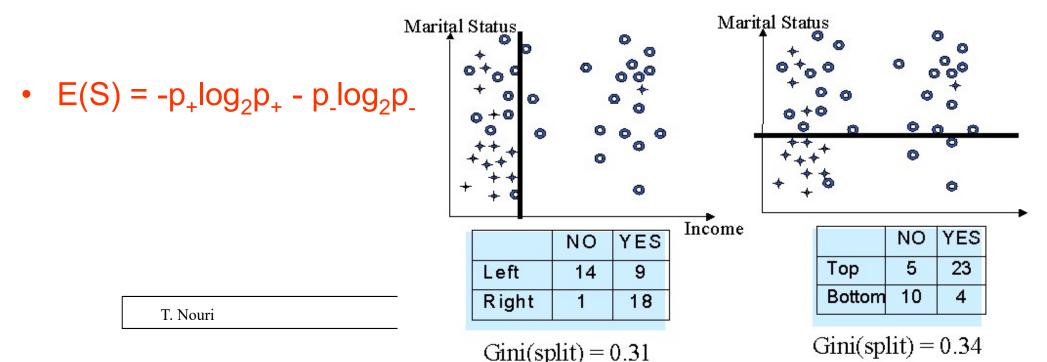
Classification learning

- Supervised learning (labels known)
- Example described in terms of attributes
 - Categorical (unordered symbolic values)
 - Numeric (integers, reals)
- Class (output/predicted attribute): categorical for classification, numeric for regression


Decision-tree classification

Age=40, CarType=Family \Rightarrow Class=Low

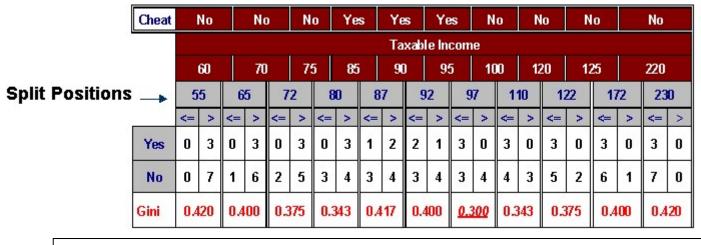

From tree to rules


1) Age $< 27.5 \Rightarrow$ High

- 2) Age >= 27.5 and CarType = Sports \Rightarrow High
- 3) Age >= 27.5 and CarType \neq Sports \Rightarrow Low

T. Nouri	Data Mining	27

✦Don't Cheat



Finding good split points

- Use Gini index for partition purity
- If S is pure, Gini(S) = 0, Gini is a kind of entropy calculation
- Find split-point with minimum Gini
- Only need class distributions

How informative is an attribute?:

- Statistic measure of informativity, measuring how well an attribute distinguishes between examples of different classes.
- Informativity is measured as the decrease in entropy of the training set of examples.
- Entropy is the measure of impurity of the sample set:
- $E(S) = -p_+ \log_2 p_+ p_- \log_2 p_-$

What is association mining?

- Given a set of items/attributes, and a set of objects containing a subset of the items
- Find rules: if I1 then I2 (sup, conf)
- I1, I2 are sets of items
- I1, I2 have sufficient support: P(I1+I2)
- Rule has sufficient confidence: P(I2|I1)

What is association mining?

Ex:

If A and B then C

If A and not B then C

If A and B and C then D etc.

Support & Confidence

Support is defined as the minimum percentage of transactions in the DB containing A and B.

Confidence is defined as the minimum percentage of those transactions containing A that also contain B.

Ex. Suppose the DB contains 1 million transactions and tthat 10'000 of those transactions contain both A and B.

We can then say that the support of the association if A then B is: S= 10'000/1'000'000 = 1%.

Likewise, if 50'000 of the transactions contain A and 10'000 out of those 50'000 also contain B then the association rule if A then B has a confidence 10'000/50'000 = 20%.

Confidence is just the conditional probability of B given A.

32

Support & Confidence

$R: LS \rightarrow RS$

Supp(R)= supp(LS \cup RS)

= #Transaction verifying R / (Total # of Transaction)

$Conf(R) = supp(LS \cup RS)/supp(LS)$

Ex:

R: Milk=> cookies,

A support(R) of 0.8 means in 80% of transaktion Milk and cookies are together.

The confidence means the correlation, the relation between the LS and the RS.

T. Nouri	Data Mining	
----------	-------------	--

Association Mining ex.

Ticket 1	Ticket 2	Ticket 3	Ticket 4
Farine	Oeufs	Farine	Oeufs
Sucre	Sucre	Oeufs	Chocolat
Lait	Chocolat	Sucre	Thé
		Chocolat	

Farine \rightarrow Sucre has a **confidence** of 100%, this is the force of the association and a support of 2/3. \Leftrightarrow number of association farine => Sucre divided by number of ticket where sucre or farine exist.

What is association mining?

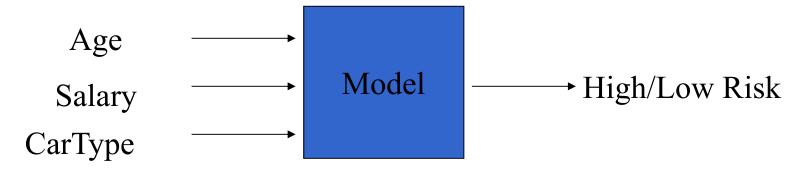
TransaktionID	PassagierID	Ziel
431	102	New York
431	102	London
431	102	Cairo
431	102	Paris
701	38	New York
701	38	London
701	38	Cairo
11	531	New York
11	531	Cairo
301	102	New York
301	102	London
301	102	Paris

What is Support and what is Confidence? Having the following Rule:

Rule: Who visit New York, visit London too.<==> New York=>London.

Calculate the support the <u>Support</u> and the <u>Confidence</u> of this Rule.

What is sequence mining?


- Given a set of items, list of events per sequence ordered in time
- Find rules: if S1 then S2 (sup, conf)
- S1, S2 are sequences of items
- S1, S2 have sufficient support: P(S1+S2)
- Rule has sufficient confidence: P(S2|S1)

Sequence mining

- User specifies "interestingness"
 - Minimum support (minsup)
 - Minimum confidence (minconf)
- Find all frequent sequences (> minsup)
 - Exponential Search Space
 - Computation and I/O Intensive
- Generate strong rules (> minconf)
 - Relatively cheap

Predictive modeling

A "black box" that makes predictions about the future based on information from the past and present

Large number of input available

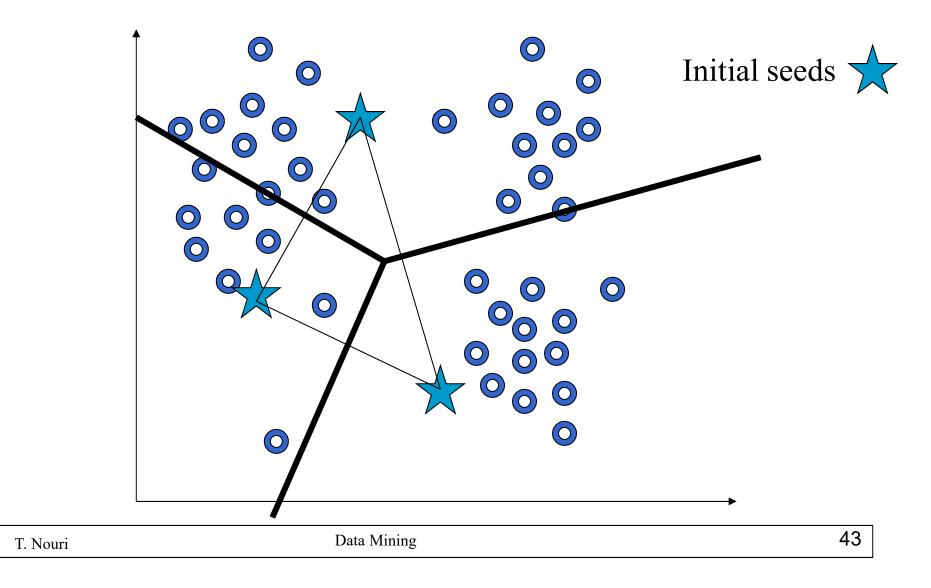
T. Nouri	Data Mining	39

What is clustering?

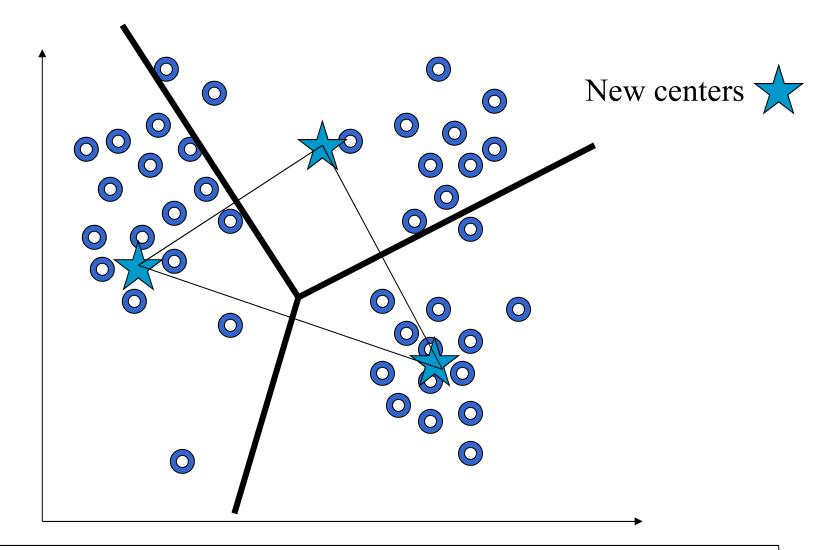
Given N k-dimensional feature vectors, find a "meaningful" partition of the N examples into c subsets or groups

- Discover the "labels" automatically
- c may be given, or "discovered"
- much more difficult than classification, since in the latter the groups are given, and we seek a compact description

Clustering

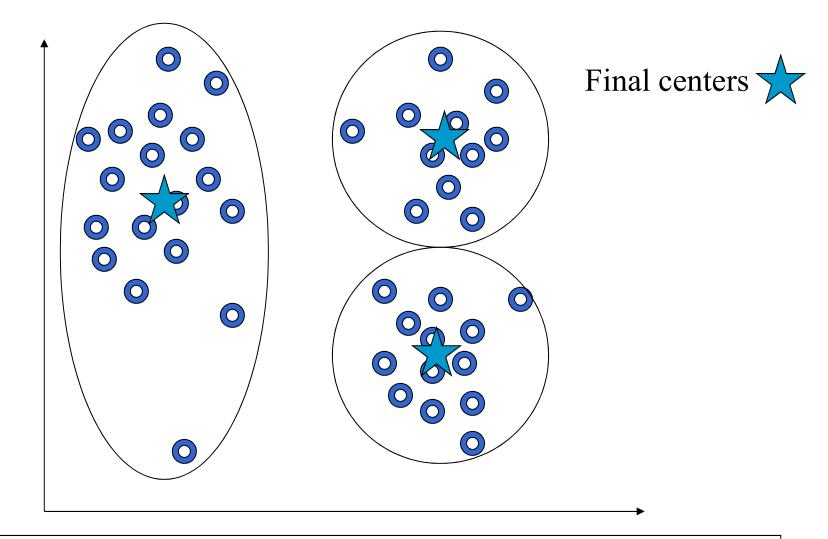

- Have to define some notion of "similarity" between examples
- Goal: maximize intra-cluster similarity and minimize inter-cluster similarity
- Feature vector be
 - All numeric (well defined distances)
 - All categorical or mixed (harder to define similarity; geometric notions don't work)

Clustering schemes

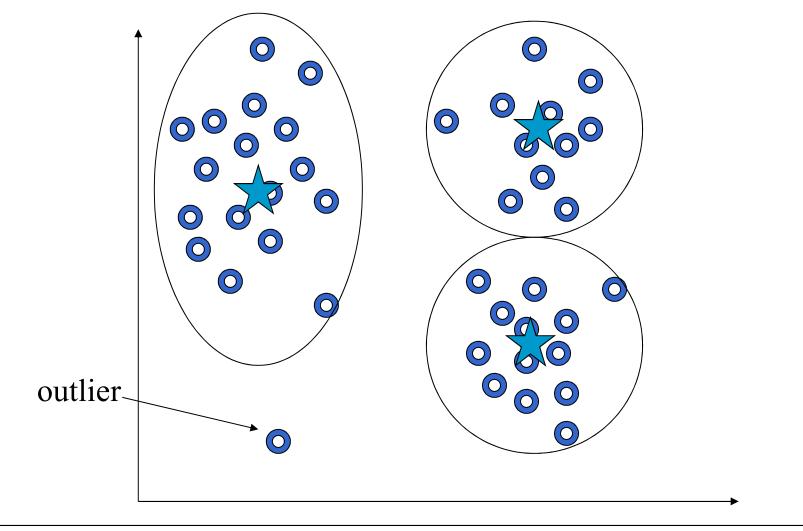

Distance-based

- Numeric
 - Euclidean distance (root of sum of squared differences along each dimension)
 - Angle between two vectors
- Categorical
 - Number of common features (categorical)
- Partition-based
 - Enumerate partitions and score each

K-means algorithm



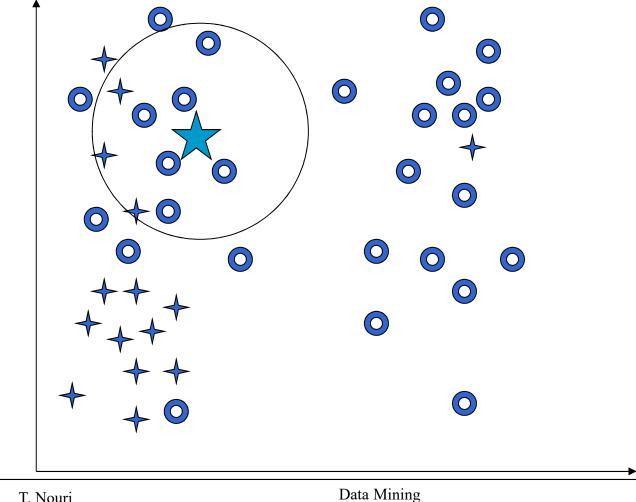
K-means algorithm


T	Ъ .т	•
1 L	Nou	Ir1
т.	1100	

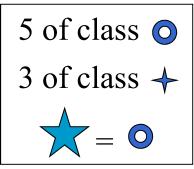
K-means algorithm

T. Nouri	Data Mining	

Deviation detection



T. Nouri	Data Mining	46


K-nearest neighbors

- Classification technique to assign a class to a new example
- Find k-nearest neighbors, i.e., most similar points in the dataset (compare against all points!)
- Assign the new case to the same class to which most of its neighbors belong

K-nearest neighbors

Neighborhood

Conclusions

- Scientific and economic need for KDD
- Made possible by recent advances in data collection, processing power, and sophisticated techniques from AI, databases and visualization
- KDD is a complex process
- Several techniques need to be used

Conclusions

- Need for rich knowledge representation
- Need to integrate specific domain knowledge.
- KDD using Fuzzy-categorical and Uncertainty Techniques
- Web Mining and User profile
- KDD for Bio-Informatique

http://www.kdnuggets.com/

Questio

